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ABSTRACT

There is increasing interest in understanding how behaviour influences trade-offs that facilitate species coexistence. In the absence of spatiotemporal 
habitat separation and resource partitioning, behavioural differences mediate competition among sympatric species. Here, we examine two 
behaviours, docility and exploration, using two standardized assays in three rodent species that coexist in Algonquin Provincial Park, Ontario, 
Canada, as part of an ongoing mark–recapture project. We used reproductive status as a proxy for energetic costs during a single breeding season, 
hypothesizing that differences in docility and exploration reflect species-specific reproductive life-history traits. We predicted that behavioural 
differences would be most notable between breeding and non-breeding individuals. We report mean differences in behavioural traits for deer mice 
(Peromyscus maniculatus), which are more explorative and less docile than red-backed voles (Clethrionomys gapperi) or woodland jumping mice 
(Napaeozapus insignis). We also report low among-individual variation in both behaviours across species. The populations observed in this study 
are known to be dependent on similar resources. Behaviour is an important, yet underexplored, mechanism of coexistence in the face of limiting 
resources. Here, we demonstrate that differences in exploration and docility are related to species reproductive life history. Thus, reproductive 
history traits and seasonal or annual changes in behaviours can be an important consideration for understanding the mechanisms that facilitate 
species coexistence.
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I N T RO D U CT I O N
Species coexistence is mediated through stabilizing and equalizing 
mechanisms that reduce interspecific competition and promote 
differences in fitness through trade-offs in resource acquisition 
and allocation (Chesson 2000, Chesson and Kuang 2008). Spe-
cies reduce competition through trait differentiation, or niche 
partitioning, using behavioural or morphological advantages to 
exploit resources (Dewsbury et al. 1980, Klauschies et al. 2016). 
For example, differences in spatial and temporal foraging effort 
can allow species to maximize energy gain (Kneitel and Chase 
2004). Across species, a suite of behavioural, physiological, and 
life-history traits promote divergence in resource use. Although 
classic niche theory predicts that co-occurring species are phylo-
genetically distant, niche partitioning can facilitate coexistence 
among closely related taxa (Webb et al. 2002). Recent studies have 
shown that repeatable among-individual behaviour related to 
resource partitioning reflects the suite of traits that enable 
cross-species coexistence (Morris and Palmer 2023). However, 

there are comparably few studies that link among-individual vari-
ation in behaviour as a mechanism promoting coexistence 
(Wauters et al. 2019, Morris and Palmer 2023).

Consistent differences in behaviour, referred to as ‘animal per-
sonality’ (Dall et al. 2004, Réale et al. 2007), affect foraging, fitness, 
parasite load, resource competition, and social dynamics (Smith 
and Blumstein 2008, Webster et al. 2009, Boyer et al. 2010, Mon-
tiglio et al. 2013, Gharnit et al. 2020). Variation in behaviour can 
also influence broader ecological processes, such as seed dispersal 
(Brehm and Mortelliti 2022). For example, social hierarchy influ-
ences seed zoochory, because more dominant individuals disperse 
a greater quantity of seeds (Zwolak 2018, Bartel and Orrock 
2022). Behavioural variation often follows a ‘fast’ to ‘slow’ contin-
uum alongside life-history and physiological traits (Promislow 
and Harvey 1990, Réale et al. 2010). Life history in faster species 
is characterized by a more rapid metabolism, growth, and repro-
ductive maturation, with an elevated reproductive output at the 
expense of increased mortality, in comparison to slower species 
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(Stearns 1998). Additionally, faster species are typically more 
bold, explorative, and less docile to accommodate a more rapid 
metabolism and reproductive output (Réale et al. 2010, Best et 
al. 2020).

Personality traits have been shown to play a role in facilitating 
species coexistence. For example, the habitat preferences of brown 
(Lemmus trimucronatus) and collared lemmings (Dicrostonyx 
groenlandicus) are associated with differences in exploration and 
activity (Morris et al. 2019). Among-individual personality dif-
ferences can also promote coexistence because individuals capi-
talize on resources through different behavioural strategies. 
Boldness is strongly associated with space-use patterns facilitating 
the coexistence of bank voles (Clethrionomys glareolus) and striped 
field mice (Apodemus agrarius; Schirmer et al. 2020). Personality 
can influence dispersal, home range size, and foraging strategy 
because bolder, more explorative individuals are more likely to 
disperse further and be generalist foragers (Bolnick et al. 2003, 
Schirmer et al. 2020, Morris and Palmer 2023). For example, for-
aging site selection in red-backed voles (Clethrionomys gapperi) is 
influenced by docility and boldness, with less docile and more 
bold individuals having a greater propensity for foraging in novel 
sites (Merz et al. 2023).

Docility and exploration are two traits that reflect individual 
differences in spatial movement and engagement with novel stim-
uli (Morris 1984, Dingemanse et al. 2003, Réale et al. 2007, Careau 
et al. 2009, Petelle et al. 2013). Exploration is distinct from bold-
ness, reflecting movement in novel, low-risk environments, 
whereas boldness is better suited to measure risk-taking in 
non-novel contexts (Réale et al. 2007). In contrast, docility is a 
response to a potential threat (namely, a predator) and is thus a 
proxy for risk-taking, because more docile individuals are gener-
ally more risk averse (Réale et al. 2000, Martin and Réale 2008a, 
Careau et al. 2010, Williams et al. 2023).

Given that exploration and docility influence the tendency of 
an individual to move around an environment and engage with 
novel stimuli, among-individual differences can reflect resource 
gain and expenditure. However, other energetically expensive 
processes, such as reproduction, can be influenced equally by dif-
ferences in personality and are comparatively understudied 
(Gómez-Llano et al. 2021). For example, reproductive interfer-
ence might promote spatial and temporal separation because 
cross-species mating can reduce reproductive success (Hochkirch 
et al. 2007). Likewise, reproduction might influence coexistence 
indirectly because behavioural changes related to mating strategy 
and energy intake during reproduction can vary across species 
(Eccard et al. 2011).

Reproduction is energetically expensive and requires a trade-off 
between future reproductive success and current self-maintenance 
(Promislow and Harvey 1990). Many rodents invest in seasonal 
breeding strategies to offset the energetic costs of reproduction 
(Bronson and Perrigo 1987, Bergeron et al. 2011). Although 
year-round breeding occurs in favourable conditions, seasonal 
reproduction is common where resources are scarce, such as 
breeding in the spring to offset winter food scarcity (Wolff and 
Sherman 2008, Eccard and Herde 2013). Personality traits related 
to the use of space can also influence interactions between sym-
patric species during breeding (Powell and Mitchell 2012, Dufour 
et al. 2015). Generally, breeding individuals require increased 

resources and are more aggressive owing to changes in their hor-
monal state, which alters the likelihood of interspecific interac-
tions (Eccard et al. 2011). Therefore, if personality traits reflect 
the behavioural, physiological, and life-history traits that enable 
coexistence, understanding differences in personality across repro-
ductive stages might be an important component to study.

Deer mice (Peromyscus maniculatus), red-backed voles, and 
woodland jumping mice (Napaeozapus insignis) are three rodent 
species that overlap in ecological niche (Fryxell et al. 1998). All 
three species are polyandrous and sire multiple litters from May 
to August. In wild environments, deer mice generally display fast 
behaviours (Careau et al. 2011), reproducing three to five times 
each breeding season, with each litter containing four to six pups 
(Maser et al. 1981). The gestation period for deer mice lasts 
∼20 days, and juveniles become independent after 2 weeks (Kurta 
2017). Deer mice have an average lifespan of 1–2 years and reach 
sexual maturation after 6–8 weeks (Dice 1936). Red-backed voles 
also live for 1–2 years and produce litter sizes that range from four 
to five pups, two to three times per reproductive season (Merrit 
1981). Gestation in red-backed voles lasts for ∼2 weeks, and juve-
nile red-backed voles are independent after 17–20 days. 
Red-backed voles reach sexual maturity after 3 months (Merrit 
1981, Linzey 1995). In contrast, woodland jumping mice live for 
4–5 years (Wrigley 1972) and reproduce one or two times per 
season. Woodland jumping mice also produce fewer offspring per 
reproductive event than deer mice and red-backed voles, siring 
two to four pups per litter (Whitaker and Wrigley 1972). The ges-
tation period for woodland jumping mice can take ∼30 days. Juve-
nile woodland jumping mice leave the den after 3 weeks and reach 
sexual maturity after 2 months (Wrigley 1972, Ovaska and Her-
man 1988).

Despite differences in life history, coexisting populations com-
pete for the same resources. For example, co-occurring northern 
populations in Algonquin Provincial Park, Canada, are dependent 
on the same maple seed crop for food despite differences in 
micro-habitat (Schulte-Hostedde and Brooks 1997, Falls et al. 
2007). Additionally, all three species are considered 
income-breeding rodents, which rely less on stored fat during 
reproduction and instead increase foraging intake to accommo-
date the increased energetic requirement associated with repro-
duction in females ( Jönsson and Jonsson 1997, Bonnet et al. 1998, 
Broussard et al. 2005).

We aimed to evaluate behavioural variation among sympatric 
rodents during different stages of the reproductive season. Our 
study focused on three species: the deer mouse, red-backed vole, 
and woodland jumping mouse. Personality traits can reflect the 
behavioural mechanisms that enable coexistence, and reproduc-
tion can influence personality traits (Eccard et al. 2011, Morris 
and Palmer 2023). Therefore, we hypothesized that behavioural 
differences would emerge across species along a fast–slow contin-
uum predicted by reproductive life-history traits. We predicted 
that across species, deer mice are more explorative and less docile 
than red-backed voles and woodland jumping mice, respectively. 
Given that exploration and docility contribute to resource and 
mate acquisition (Gharnit et al. 2022, Warrington et al. 2024), 
differences in these behaviours facilitate niche partitioning across 
co-occurring species (Montiglio et al. 2013). Furthermore, previ-
ous work has demonstrated significant interspecific differences in 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article/147/1/blaf135/8407896 by guest on 02 January 2026



Behaviour in coexisting rodents  •  3

exploratory and docile behaviours among closely related rodents 
(Frynta 1994, Best et al. 2020, Morris and Palmer 2023). 
Species-specific reproductive strategy also reflects seasonal energy 
investment and can influence behaviour. Thus, differences in 
behaviours during breeding seasons could be one mechanism to 
reduce intraspecific competition and promote differential resource 
acquisition.

M AT E R I A L S  A N D  M ET H O D S
Sampling

All animals were surveyed in accordance with proper animal care 
practices (animal care permit #6011106) approved by Laurentian 
University. Mice and voles were surveyed in Algonquin Provincial 
Park, Ontario, Canada (45°54′N, 78°26′W) from 17 
pre-established (Fryxell et al. 1998) and three new traplines from 
May to August 2022. Each trapline consisted of 20 Sherman traps 
(H.B. Sherman Traps, Inc., Tallahassee, FL, USA), with two placed 
every 10 m. Traplines were set over three consecutive nights every 
2 weeks on a staggered schedule. Each trap was filled with 10–20 
water-soaked sunflower seeds and cotton bedding at dusk and was 
checked for animals at dawn. Traps were checked in the same 
order each morning to compare potential impacts of longer trap 
confinement on behaviour (Brehm et al. 2020). Trapped individ-
uals were collected from Sherman traps and placed in a clear plas-
tic handling bag. Individuals were tagged with a unique numeric 
ear tag as part of a long-term mark–recapture study, weighed using 
a Pesola scale (±0.1 g), sexed, and assigned an age class (juvenile, 
sub-adult, or adult) based on body mass and fur colour (Schmidt 
et al. 2019). Furthermore, current individual breeding status was 
assessed as scrotal or non-scrotal for males, based on the visibility 
of testes, and as pregnant, lactating, or non-reproductive (not 
actively expressing signs of ongoing gestation or lactation) for 
females, based on visible signs of pregnancy and lactation.

Behavioural assays
All testing took place directly in the field. Therefore, tests occurred 
in different locations with different surrounding environments, 
light levels, and canopies. Captured individuals were subjected to 
either a 1 min handling bag test or a 5 min open field test each trap 
day. Given that the collection of morphometric data would require 
handling the individual directly in the bag, all handling bag tests 
occurred before the collection of morphometric data, and the 
open field tests occurred after. Handling bag tests are used to quan-
tify the response of an animal to presence of a human as a measure 
of docility (Martin and Réale 2008a). Thus, morphometrics were 
collected after the handling bag test to minimize confounding 
variables associated with handling time. During the handling bag 
test, individuals were released from the trap into a clear plastic bag 
and suspended at arm’s length for 1 min (Fig. 1A). Given that indi-
viduals were transported directly from the trap to the bag, cotton 
or excess seeds could fall into the handling bag; therefore, inter-
actions with these materials were included as separate behaviours. 
Docility was then measured as the total number of seconds an 
individual spent immobile or ‘freezing’ (Martin and Réale 2008a; 
Supporting Information, Table S1).

Open field tests are used to measure exploration in a novel, 
non-risky environment (Carter et al. 2013). During the open field 

test, individuals were retrieved from traps, underwent handling 
procedures, and were promptly introduced to the behavioural 
arena directly from the clear plastic bag, through a polyvinyl chlo-
ride (PVC) opening. Although the collection of morphometric 
data would influence exploration, recapturing the individual to 
collect morphometric data post-test would be more stressful for 
the animal. Total exploration behaviour was measured as the time 
an individual spent performing any locomotion except for groom-
ing (forward motion, rearing, or scratching in place), whereas 
non-exploratory time was measured as time spent motionless 
either in the arena or in the entrance, marked as hiding behaviour 
(Supporting Information, Table S1). The 5 min began once the 
individual was placed successfully inside the PVC opening. Indi-
viduals commonly darted out of the bag, away from the handler; 
therefore, individuals entered the arena immediately without wait-
ing inside the PVC entrance.

Once the test began, observers left the view of the animal inside 
the arena. The arena was cleaned between each trial using an 80% 
vinegar solution, then rinsed with water. Behavioural assays were 
recorded in the field using a video camera (Sony HDR-CX405) 
and were later analysed in the laboratory using the video record-
ings (Table 1).

Open field test arena design
The open field test was conducted inside a novel plastic arena 
(51 cm × 41 cm × 74 cm) fitted with an 8.89 cm PVC opening and 
a mesh barrier on top to prevent an individual from leaving the 
arena, while still allowing for recording. The plastic used was black, 
with a surrounding blue plastic lid that was not visible to the indi-
vidual inside the arena (Fig. 1B).

Video processing
Videos were assessed by BH using Cow Log v.3.0 (Pastell 2016) 
to quantify behaviours using predefined ethograms (Supporting 
Information, Tables S1 and S2). For handling bag tests, codes 
included ‘escape’, ‘move’, ‘groom’, ‘forage’, and ‘freeze’, where escape 
and move behaviours were pooled together to measure docility 
(Supporting Information, Table S1). For open field tests, codes 
used were ‘move’, ‘groom’, ‘freeze’, and ‘hide’, where explorative 
behaviour was measured as the total time spent moving (Support-
ing Information, Table S2). Given that individuals were able to 
return to the PVC opening and remain mobile, we included this 
as a separate behaviour because the obscurity of a tunnel might 
encourage increased immobility. For both tests, non-visible time 
refers to the period during which an individual was not captured 
adequately by the camera, owing to a malfunction, improper cam-
era positioning, or the presence of cotton during the handling bag 
test. Individuals with >30 s of non-visible time were excluded from 
data analysis. All recorded data can be found in Supporting Infor-
mation, Data S1.

Statistical analyses
Statistical analyses were conducted using the statistical software 
R v.4.2.3 (R Core Team 2023). We ran a repeatability analysis on 
behavioural variables for each species to determine whether the 
behaviours observed in each video were repeatable across individ-
uals and thus considered personality phenotypes (Wilson 2018). 
Because there were no repeated observations of woodland 
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jumping mice with the open field test, we were unable to test for 
repeatability in exploration in this species. For each model, the 
total times spent performing specific actions were pooled together 
and defined as the total expressed behaviour. For docility, this 
meant that any freezing, non-moving behaviour was considered 
docile. For the open field test, walking, running, jumping, rearing, 
and scratching in place were considered exploratory behaviour. 
Repeatability of each behaviour was estimated using the rptR 
package in R (Stoffel et al. 2017), with a bootstrap interval of 5000 
and 1000 permutations. Each model used individual identity (ID) 
as a random effect. We did not limit the repeatability test to indi-
viduals with more than one observation because this has been 
shown to miss variation in individual plasticity (Martin et al. 
2011). We excluded any fixed effects from this analysis because 
the fixed effects used in this study (age, reproductive condition, 
date, and sex) had a negligible effect on the variation of exploration 
or docile behaviour.

For each species separately, docility was log-transformed for 
normality. Using the first instance of either behavioural test, only 
in individuals which had undergone both tests, we measured the 
correlation between docility and exploration in deer mice and 

red-backed voles using Spearman’s correlation test. Given that all 
individuals were wild-caught, it was impossible to test the same 
number of individuals at each location, during each trap session. 
Thus, our dataset includes behavioural tests that might occur in 
relatively rapid succession, spaced apart by days, weeks, or months. 
Frequent testing and resulting habituation can influence 
behavioural analyses (Martin and Réale 2008a, Tranquillo et al. 
2023). However, the most notable differences in personality occur 
between the first and second instances of the same behavioural 
test (Žampachová et al. 2017, Rudeck et al. 2020). Therefore, we 
grouped test occurrences by either the first occurrence for that 
individual or as a subsequent test. We then evaluated differences 
in behaviour between the first and subsequent test events using a 
Bayesian Markov Monte Carlo (MCMC) multivariate model in 
the package MCMCglmm (Hadfield 2010), with individual ID 
as a random effect for each behavioural assay. We used the 
MCMCGLMM package to estimate the posterior probability 
(pMCMC) as an analoug to frequentist p-values to determine if 
there was a substantive effect in either behaviour. To select priors, 
the model was initially run with weak prior estimations (0, 10), 
then with different priors, and the resulting posterior distributions 

Figure 1. A, a deer mouse (Peromyscus maniculatus) in a plastic bag, held <1 m off the ground, at arm’s length from an observer for the handling 
bag test. B, a woodland jumping mouse (Napaeozapus insignis) inside the plastic open field testing arena, directly in the field. Individuals were 
subjected to this test in proximity to the location where they were trapped; thus, the associated canopy is presumed to be familiar. Each open 
field test lasted 5 min, after which observers opened the lid and released individuals in the same location. During the 5 min tests, observers were 
not visible to the animal and would proceed to the next set of traps until the end of the test.
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were checked (Hadfield 2010). Models were run using inverse 
Wishart priors and a Gaussian distribution with 8 500 000 itera-
tions, with a thinning interval of 10 000, and a burn-in of 150 000, 
which yielded an effective sample size of 566. To ensure model 
convergence, we visually inspected autocorrelation plots devel-
oped using the package CODA (Plummer et al. 2006).

We then ran separate MCMC models with either docility or 
exploration as the response variable for all individuals grouped as 
reproductive (scrotal for males; pregnant or lactating for females) 
or non-reproductive (non-scrotal for males; non-reproductive for 
females). Each model then used age, species, date, and sex as fixed 
effects, with individual ID as a random effect. Date was used as a 

categorical fixed effect (May, June, July, August, or September) 
because samples are non-independent; however, date provided 
poor model convergence as a random effect. Although 
among-individual correlations (Rind) are most often estimated 
alongside residual correlations (within individual) when traits are 
measured simultaneously in a set of individuals (Dingemanse and 
Dochtermann 2013), it is still possible to estimate correlations 
among individuals when traits are observed separately (Careau 
et al. 2015). However, it is not possible to measure the residual 
correlations when traits are assayed individually. To calculate Rind, 
we used the proportion of variance attributed to individual ID 
divided by the total variance (random ID + residual variance). For 
docility, we back-transformed the log difference between each 
category and the reference level to show the approximate differ-
ence in seconds. All models were run using the same iteration, 
thinning interval, and burn-in used for the model measuring dif-
ferences between subsequent tests, yielding an effective sample 
size of 835. We visually inspected the trace and autocorrelation 
plots to ensure that the models converged properly (Supporting 
Information, Data S2).

R E SU LTS
Repeatability estimates

We used behavioural observations from 202 handling bag tests, 
including observations of 83 deer mice (137 total tests), 48 
red-backed voles (65 total tests), and 15 woodland jumping mice 
(19 total tests). We also analysed 157 open field tests, including 
observations of 84 deer mice (93 total tests), 37 red-backed voles 
(42 total tests), and 15 woodland jumping mice (19 total tests). 
Only docility behaviour in deer mice expressed significant repeat-
ability, with 38% of variation in docility attributable to differences 
between individuals [95% confidence interval (CI) = (.082, .62), 
d.f. = 1, likelihood-ratio test = 4.46]. Regarding exploration 
behaviour, 23% of variation was related to differences between 
individuals [95% CI = (0, .66), d.f. = 1, likelihood-ratio test = 1.15]; 
however, this result was not statistically significant (P = .14). 
Exploration in deer mice and both docility and exploration in 
red-backed voles were not considered statistically significant (Sup-
porting Information, Table S3).

Relationships between behaviour and repeated sampling
Spearman’s rank correlation test did not reveal any significant cor-
relation between exploratory and docile behaviour using the first 
instance of both tests for all species (deer mice, ρ = −0.29, P = .1; 
red-backed voles, ρ = −0.41, P = .06; woodland jumping mice, 
ρ = 0.8, P = .13). There was no support for a strong difference in 
docility between the first and subsequent instances of the handling 
bag test for either deer mice [posterior mean = .0041, 95% credible 
interval (CrI) = (−0.46, .59), effective sample size = 766, 
pMCMC = .86] or red-backed voles [posterior mean = 0.046, 95% 
CrI = (−0.44, .45), effective sample size = 566, pMCMC = .87]. 
Likewise, there was no support for differences between the first 
and subsequent instances of the open field test for deer mice [pos-
terior mean = −7.05, 95% CrI = (−41.74, 25.24), effective sample 
size = 566, pMCMC = .71] or red-backed voles [posterior 
mean = −27, 95% CrI = (−123.9, 57.85), effective sample 

Table 1. The total number of deer mice, red-backed voles, and 
woodland jumping mice recorded from the handling bag and open 
field test.

Category Handling 
bag 
tests (N)

Open field 
tests (N)

Deer mice
Total individuals (N) 137 93
Unique individuals 96 76
Male 80 55
Female 57 38
Adult 67 39
Sub-adult 44 32
Juvenile 26 22
Reproductive male 36 15
Non-reproductive male 44 40
Reproductive female 6 4
Non-reproductive female 51 34
Red-backed voles
Total individuals (N) 65 44
Unique individuals 53 41
Male 41 26
Female 24 18
Adult 63 39
Sub-adult 0 5
Juvenile 2 0
Reproductive male 22 12
Non-reproductive male 19 14
Reproductive female 13 8
Non-reproductive female 11 10
Woodland jumping mice
Total individuals (N) 19 18
Unique individuals 18 17
Male 7 8
Female 12 10
Adult 17 18
Sub-adult 1 0
Juvenile 1 0
Reproductive male 3 3
Non-reproductive male 4 5
Reproductive female 6 6
Non-reproductive female 6 5

Unique individuals represent the first instance of either test, whereas the total 
individuals includes subsequent samples. Also shown is the total number of individuals 
sampled from each age class (adult, sub-adult, or juvenile) or grouped reproductive 
condition. Reproductive females include individuals that were identified as either 
pregnant or lactating at the time of the test.
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size = 566, pMCMC = .53]. Thus, species behaviour did not seem 
to be affected systematically by repeated sampling in any of our 
surveyed species (Fig. 2).

Cross-species comparison of docility and exploration
The model for docility revealed among-individual variation in 
docility for reproductive individuals to be 11% [N = 86, R
ind = .11, 95% CrI = (.0006, .46), effective sample = 835]. The mean 
docility time for reproductive red-backed voles was ∼38 s [N = 35, 
posterior mean = 1.19, 95% CrI = (.61, 1.77), effective sam-
ple = 835, pMCMC ≤ .001]. Meanwhile, the mean docility time 
in reproductive woodland jumping mice was ∼45 s [N = 9, poste-
rior mean = 1.35, 95% CrI = (.52, 2.21), effective sample = 835, 
pMCMC = .007]. In comparison to reproductive deer mice, repro-
ductive red-backed voles were more docile for ∼27 s, and wood-
land jumping mice for ∼33 s (Table 2).

In contrast, among-individual variation in non-reproductive 
individuals accounted for 22% of variance [N = 139, R

ind = .22, 95% CrI = (.0016, .52), effective sample size = 835]. 
The mean docility time for non-reproductive red-backed voles was 
∼44 s [N = 30, posterior mean = 1.17, 95% CrI = (.62, 1.74), effec-
tive sample size = 835, pMCMC ≤ .001]. Thus, non-reproductive 
red-backed voles were ∼31 s more docile than non-reproductive 
deer mice. For woodland jumping mice, the predicted mean docil-
ity time was ∼24 s [N = 10, posterior mean = 0.58, 95% 
CrI = (−0.15, 1.23), effective sample size = 835, pMCMC = .12]. 
Non-reproductive woodland jumping mice were ∼11 s more doc-
ile than non-reproductive deer mice (Table 2).

There was no support for strong associations between any of 
the fixed effects used (age, sex, or date) along with docility time 
for either reproductive category (Table 2). Meanwhile, there 
were negligible differences in the log-transformed docility 

scores between red-backed voles and woodland jumping mice 
(Fig. 3).

Among-individual variation accounted for 3.8% of variance in 
exploratory behaviour in reproductive males and females 
[N = 48, R

ind = .036, 95% CrI = (0.00, .33), effective sample size = 835]. 
Male and female woodland jumping mice in the reproductive cat-
egory were ∼64 s less explorative than reproductive deer mice 
[N = 9, posterior mean = −63.8, 95% CrI = (−137.7, 11.3), effec-
tive sample size = 835, pMCMC = .093], although the credible 
interval crossed zero, hence there was no support for a strong 
difference in exploration. In contrast, male and female red-backed 
voles were ∼75 s less explorative than deer mice [N = 20, posterior 
mean = −74.7, 95% CrI = (−123.3, −10.6), effective sample 
size = 836, pMCMC = 0.0024].

For non-reproductive males and females, among-individual 
variation accounted for 9.8% of variance in exploratory behaviour 
[N = 108, R

ind = .096, 95% CrI = (0.00, .56), effective sample size = 835]. 
Non-reproductive woodland jumping mice were ∼45 s less explor-
ative than deer mice [N = 10, posterior mean = −44.8, 95% 
CrI = (−92.7, .047), effective sample size = 1010, pMCMC = .06], 
with a credible interval that crossed zero. Likewise, 
non-reproductive red-backed voles were ∼101 s less explorative 
than deer mice [N = 24, posterior mean = −100.6, 95% 
CrI = (−134.9, −69.3), effective sample size = 641, 
pMCMC ≤ .001]. Non-reproductive males and females that were 
surveyed in May were also less explorative than non-reproductive 
males and females surveyed in August [N = 3, posterior 
mean = −104.2, 95% CrI = (−184.9, −31.1), effective sample 
size = 835, pMCMC = .007]. Thus, there were some mean differ-
ences in exploratory behaviour across species (Fig. 4).

Figure 2. A boxplot depicting time spent performing each behaviour in the open field test (A) or handling bag test (B), showing the mean 
exploration and docility times for deer mice, red-backed voles, and woodland jumping mice. For each species, shown is the mean time for the 
first vs. all subsequent tests grouped together (denoted as Sub). Jitters represent each unique handling bag or open field test. Boxes represent the 
interquartile range, and whiskers represent 1.5SD from the interquartile range.
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D I S C U S S I O N
We hypothesized that reproductive life history would reflect 
exploration and docile behaviour across sympatric species and 
that these differences would be more prominent between seasonal 
breeding stages. Based on species life-history traits, we predicted 
that deer mice would be more explorative and less docile than 
red-backed voles and that red-backed voles and deer mice would 
both be more explorative and less docile than woodland jumping 
mice. However, we found only that deer mice were consistently 
more explorative and less docile than red-backed voles and 

woodland jumping mice. Meanwhile, differences in docility 
between red-backed voles and woodland jumping mice were neg-
ligible, and woodland jumping mice were more explorative than 
red-backed voles. Given that only docility in deer mice was repeat-
able in this study, the behaviours observed here can be used only 
as a proxy of mean trait expression and do not fully reflect animal 
personality (Niemelä and Dingemanse 2018). Likewise, we con-
ducted our behavioural assays independently, adapting the ‘indi-
vidual gambit’ (Brommer 2013), assuming that individual traits 
reflect phenotypic variation even when measured in isolation. 

Table 2. Summary of fixed effects for Bayesian Markov Monte Carlo multivariate model for docile and explorative behaviour revealed from all 
handling bag and open field tests.

Fixed effects Posterior mean 95% Credible interval Effective sample pMCMC

Docility
Reproductive individuals
Intercept 2.45 [1.76; 3.15] 835 <.001*
AgeSA −0.02 [−0.75; .71] 835 .95
SpeciesRBV 1.19 [.61; 1.77] 835 <.001*
SpeciesWJM 1.35 [.52; 2.21] 835 .007*
DateMay −0.02 [−0.95; .96] 835 .96
DateJune .02 [−0.63; .78] 835 .95
DateJuly −0.10 [−0.65; .44] 953 .68
SexM .06 [−0.50; .70] 835 .84
Non-reproductive individuals
Intercept 2.63 [2.19; 3.06] 923 <.001*
AgeJ .21 [−0.26; .68] 835 .41
AgeSA −0.17 [−0.72; .29] 891 .52
SpeciesRBV 1.17 [.62; 1.74] 835 <.001
SpeciesWJM .58 [−0.15; 1.23] 835 .12
DateMay −0.39 [−1.07; .26] 835 .25
DateJune .23 [−0.47; .99] 813 .51
DateJuly −0.29 [−0.77; .12] 835 .17
SexM .26 [−0.15; .63] 958 .21
Exploration
Reproductive individuals
Intercept 245.5 [170.5; 334.3] 835 <.001*
AgeSA 19.03 [−73.02; 106.6] 835 .66
SpeciesRBV −74.7 [−123.3; −10.6] 836 .0024*
SpeciesWJM −63.8 [−137.7; 11.3] 835 .093
SexM −27.4 [−79.1; 27.7] 970 .31
DateMay −16.9 [−87.3; 51.2] 835 .66
DateJune −4.502 [−75.3; 67.5] 835 .91
DateJuly −51.9 [−158.5; 46.01 835 .33
Non-reproductive individuals
Intercept 222.9 [195.2; 254.9] 935 <.001*
AgeJ 3.14 [−31.7; 36.7] 835 .83
AgeSA 10.15 [−22.9; 37.9] 835 .49
SpeciesRBV −100.6 [−134.9; −69.3] 641 <.001*
SpeciesWJM −44.8 [−92.7; .047] 1010 .06
DateMay −104.2 [−184.9; −31.1] 835 .007*
DateJune −2.03 [−43.1; 45.7] 835 .93
DateJuly 8.30 [−24.58; 39.9] 835 .63
DateSeptemeber 15.6 [−22.8; −49.1] 672 .41
SexM 2.88 [−21.7; 24.5] 834 .83

For each model, species (RBV, red-backed vole; WJM, woodland jumping mouse), age ( J, juvenile; SA, sub-adult), and date of test are included as fixed effects, and individual 
identity was used as a random effect. Reproductive individuals include scrotal males and pregnant or lactating females. Non-reproductive individuals include non-scrotal males and 
females with no visible signs of pregnancy or lactation. All models used Gaussian distributions with inverse Wishart priors.
*Significance if credible interval failed to overlap zero and pMCMC > 0.05.
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Figure 3. A box plot representing the mean docility times from all handling bag tests performed on deer mice (N = 137), red-backed voles 
(N = 65), and woodland jumping mice (N = 19). All species are grouped into either reproductive (scrotal for males; pregnant or lactating for 
females) or non-reproductive (non-scrotal for males; not visibly showing signs of pregnancy or lactation for females) categories. Jitters represent 
each observation of a handling bag test; boxes represent the interquartile range, and whiskers represent 1.5SD from the interquartile range.

Figure 4. A box plot showing mean differences in exploratory behaviour from the open field test, including deer mice (N = 93), red-backed 
voles (N = 44), and woodland jumping mice (N = 18). All species are grouped into either reproductive (scrotal for males; pregnant or lactating 
for females) or non-reproductive (non-scrotal for males; not visibly showing signs of pregnancy or lactation for females) categories. Jitters 
represent each observation of a handling bag test; boxes represent the interquartile range, and whiskers represent 1.5SD from the interquar-
tile range.
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Although this limits the interpretation of behavioural syndromes, 
it remains a valid framework for examining phenotypic variation 
underlying the coexistence of sympatric species examined in 
this study.

Although we did not observe a significant relationship between 
docility and exploration in this population, this result is not 
uncommon (see Martin and Réale 2008b) and might be explained 
by our reliance on examining phenotypic correlations (Dinge-
manse et al. 2012). Furthermore, the handling bag and open field 
tests are commonly used to measure docility and exploration in 
wild animals; repeated exposure to tests can increase acclimation 
and influence behaviour (Wilson et al. 1976, Webster et al. 1979, 
Martin and Réale 2008a, Mazzamuto et al. 2019, Brehm et al. 
2020, Brehm and Mortelliti 2021, Humphreys and Mortelliti 
2024). However, subsequent testing within this study did not 
show any significant impact on either behaviour.

We observed repeatable inter-individual variation in docility 
only of deer mice. However, such variation is not necessarily 
absent for each species. For example, studies observing other Per-
omyscus mice using open field tests have found a significant and 
repeatable among-individual correlation between struggle time 
and exploratory behaviours, but not body mass (Underhill et al. 
2021). Likewise, studies on common voles (Microtus arvalis) have 
shown that behaviours related to exploration are repeatable, and 
in some circumstances, these behaviours are related to social 
group dynamics (Lantová et al. 2011). Thus, the lack of repeat-
ability observed in the present study might be linked to the num-
ber of repeated samples across individuals. Therefore, increased 
sampling across seasons might better reflect exploratory and doc-
ile behaviours in this population. Given that the behavioural traits 
observed in this study are known to be repeatable in closely related 
systems from other populations, the behavioural observations of 
this study can contribute to ongoing research on how behaviour 
drives cross-species interactions.

Additionally, within this study, we focused on measuring 
between-individual variation in behaviour to measure relation-
ships in reproductive life-history traits across species. 
Within-individual variation, using synchronous behavioural tests 
of the same individuals, can be another potential avenue to explore 
the mechanisms driving coexistence. Indeed, we show that repro-
ductive history and mean trait expression of exploratory and doc-
ile behaviour are related in deer mice. However, measuring 
within-individual variation across a breeding season, or across 
multiple breeding seasons, can help us to understand better how 
individual reproductive traits and associated changes in hormonal 
state affect behaviour.

Coexistence is dependent, in part, on trade-offs in resource 
acquisition and allocation. Thus, individuals experience a trade-off 
between resource gain (i.e. foraging) and risk from competition 
or predation (Halliday and Morris 2013). Foraging propensity is 
influenced by behavioural and morphological characteristics that 
facilitate risk avoidance. For example, larger and thus less conspic-
uous individuals are more sensitive to light and decrease foraging 
effort in response to increased luminescence (Vasquez 1996). Of 
course, niche partitioning and spatial separation are strong mech-
anisms that enable coexistence. The species surveyed in this study 
are primarily dependent on the maple seed crop (Falls et al. 2007). 

Some rodent species that overlap in habitat and resource use, 
which were not surveyed in this study, also compete for the same 
resources. For example, eastern chipmunks (Tamias striatus) and 
North American red squirrels (Tamiasciurus hudsonicus) are diur-
nal and, although they can overlap in habitat and resource depen-
dence, rarely engage in direct competition (Brunner et al. 2013). 
In contrast, northern and southern flying squirrels (Glaucomys 
sabrinus and Glaucomys volans) are nocturnal but have vastly dif-
ferent morphological characteristics and foraging strategies and 
might express larger niche partitioning efforts because some flying 
squirrels are more dependent on various fungi (Currah et al. 2000).

In contrast, deer mice, red-backed voles, and woodland jump-
ing mice often engage in more direct competition avoidance 
despite variation in microhabitat preferences (Schulte-Hostedde 
and Brooks 1997, Hughes 2023). Although we do observe differ-
ences across species, we did not observe a strong difference 
between breeding and non-breeding individuals as expected. All 
species examined in this study are income breeders, and females 
increase foraging effort to accommodate reproductive costs, rather 
than relying on fat reserves ( Jönsson and Jonsson 1997, Bonnet 
et al. 1998). The increased foraging effort during the breeding 
season can also influence exploration and docility, but this effect 
is not sex dependent (Hughes et al. 2025). Indeed, several studies 
have observed an association between behaviour and reproductive 
status, including pheromone-induced aggression (Martín-Sánchez 
et al. 2015), increased vigilance to protect against infanticide 
(Breedveld et al. 2019), and, perhaps most significantly, 
hypo-responsiveness in lactating females (Fleming and Luebke 
1981, Lonstein 2005, Windle et al. 1997, Chauke et al. 2011). 
Behavioural traits, including exploration and docility, are linked 
to food intake, productivity, and population density (Biro and 
Stamps 2008, Korpela et al. 2011). Thus, the lack of differences in 
exploration and docile behaviour observed between breeding and 
non-breeding individuals in this study might be driven by resource 
availability, which was not examined in this study.

CO N CLU S I O N
Traits explored here highlight some behavioural strategies between 
species and help to posit some plausible differences in closely 
related sympatric species. Deer mice were consistently more 
explorative and less docile than red-backed voles and woodland 
jumping mice. However, woodland jumping mice were more 
explorative than red-backed voles; meanwhile, differences in docil-
ity were negligible between these two species. Likewise, there was 
little support for strong differences in either behaviour between 
breeding or non-breeding individuals of the same species. Evi-
dently, co-occurring species commonly compete for the same 
spatial area and resources. Likewise, repeatable within-individual 
variation in behaviours related to exploration has been observed 
in other rodent species. Thus, examining the relationships between 
behaviour and various components of species-specific life histo-
ries is important for understanding the mechanisms that facilitate 
coexistence. Further investigation into mechanisms related to 
niche differentiation and behavioural adaptations might help in 
partitioning evolutionary relationships that promote coexistence. 
We encourage future research to focus on potential relationships 
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between reproduction, energetics, and behaviour as a starting 
point for exploring sympatric species coexistence.
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